Compare commits

..

No commits in common. "ai_slop" and "master" have entirely different histories.

12 changed files with 408 additions and 1072 deletions

View File

@ -49,12 +49,6 @@ flashCluster:
monitorMini: monitorMini:
idf.py monitor -p /dev/ttyACM0 idf.py monitor -p /dev/ttyACM0
monitorMini1:
idf.py monitor -p /dev/ttyACM1
monitorMini2:
idf.py monitor -p /dev/ttyACM2
flash0: flash0:
idf.py flash -p /dev/ttyUSB0 idf.py flash -p /dev/ttyUSB0
@ -72,6 +66,3 @@ monitor1:
monitor2: monitor2:
idf.py monitor -p /dev/ttyUSB2 idf.py monitor -p /dev/ttyUSB2
flash_second_ota:
parttool.py --port /dev/ttyACM0 write_partition --partition-name="ota_1" --input build/espAlox.bin

View File

@ -6,9 +6,7 @@ import (
"flag" "flag"
"fmt" "fmt"
"log" "log"
"math"
"os" "os"
"strconv"
"time" "time"
"github.com/pterm/pterm" "github.com/pterm/pterm"
@ -19,17 +17,15 @@ type ParserState int
const ( const (
// MISC // MISC
UART_ECHO = 0x01 UART_ECHO = 0x01
UART_VERSION = 0x02 UART_VERSION = 0x02
UART_CLIENT_INFO = 0x03 UART_CLIENT_INFO = 0x03
UART_CLIENT_INPUT = 0x04
// OTA // OTA
UART_OTA_START = 0x10 UART_OTA_START = 0x10
UART_OTA_PAYLOAD = 0x11 UART_OTA_PAYLOAD = 0x11
UART_OTA_END = 0x12 UART_OTA_END = 0x12
UART_OTA_STATUS = 0x13 UART_OTA_STATUS = 0x13
UART_OTA_START_ESPNOW = 0x14
) )
const ( const (
@ -202,63 +198,30 @@ func parse_uart_client_info_payload(payloadBuffer []byte, payload_len int) {
} }
} }
func parse_uart_client_input(payloadBuffer []byte, payload_len int) {
clientCount := payloadBuffer[1]
fmt.Printf("Client Count %d\n", clientCount)
clientInputLen := 13
for i := 0; i < int(clientCount); i++ {
offset := 2 + (i * clientInputLen)
// --- Client ID (uint8) ---
clientID := payloadBuffer[offset]
offset += 1
fmt.Printf("Client: %d\n", clientID)
// --- Lage X (float32) ---
xBits := binary.LittleEndian.Uint32(payloadBuffer[offset : offset+4])
lageX := math.Float32frombits(xBits)
offset += 4
fmt.Printf("\tLAGE_X: %f\n", lageX)
// --- Lage Y (float32) ---
yBits := binary.LittleEndian.Uint32(payloadBuffer[offset : offset+4])
lageY := math.Float32frombits(yBits)
offset += 4
fmt.Printf("\tLAGE_Y: %f\n", lageY)
// --- Bitmask (int32) ---
maskBits := binary.LittleEndian.Uint32(payloadBuffer[offset : offset+4])
bitmask := uint32(maskBits)
offset += 4
fmt.Printf("\tBITMASK: %032b\n", bitmask)
}
}
func message_receive_callback(mr MessageReceive) { func message_receive_callback(mr MessageReceive) {
log.Printf("Message Received: % 02X\n", mr.raw_message[:mr.raw_write_index]) log.Printf("Message Received: % 02X\n", mr.raw_message[:mr.raw_write_index])
switch mr.parsed_message[0] { switch mr.parsed_message[0] {
case byte(UART_ECHO): case byte(UART_ECHO):
break
case UART_VERSION: case UART_VERSION:
parse_uart_version_payload(mr.parsed_message, mr.write_index) parse_uart_version_payload(mr.parsed_message, mr.write_index)
break
case UART_CLIENT_INFO: case UART_CLIENT_INFO:
parse_uart_client_info_payload(mr.parsed_message, mr.write_index) parse_uart_client_info_payload(mr.parsed_message, mr.write_index)
break
case UART_OTA_START: case UART_OTA_START:
OTA_UpdateHandler.NewOTAMessage <- mr OTA_UpdateHandler.NewOTAMessage <- mr
break
case UART_OTA_PAYLOAD: case UART_OTA_PAYLOAD:
parse_uart_ota_payload_payload(mr.parsed_message, mr.write_index) parse_uart_ota_payload_payload(mr.parsed_message, mr.write_index)
OTA_UpdateHandler.NewOTAMessage <- mr OTA_UpdateHandler.NewOTAMessage <- mr
break
case UART_OTA_END: case UART_OTA_END:
OTA_UpdateHandler.NewOTAMessage <- mr OTA_UpdateHandler.NewOTAMessage <- mr
break
case UART_OTA_STATUS: case UART_OTA_STATUS:
OTA_UpdateHandler.NewOTAMessage <- mr OTA_UpdateHandler.NewOTAMessage <- mr
case UART_CLIENT_INPUT: break
parse_uart_client_input(mr.parsed_message, mr.write_index)
} }
} }
@ -276,6 +239,7 @@ func parseByte(mr *MessageReceive, pbyte byte) {
addByteToRawBuffer(mr, pbyte) addByteToRawBuffer(mr, pbyte)
} }
// ignore every other byte // ignore every other byte
break
case GET_MESSAGE_ID: case GET_MESSAGE_ID:
if pbyte == ESCAPE_BYTE { if pbyte == ESCAPE_BYTE {
mr.state = ESCAPED_MESSAGE_ID mr.state = ESCAPED_MESSAGE_ID
@ -283,9 +247,11 @@ func parseByte(mr *MessageReceive, pbyte byte) {
addByteToParsedBuffer(mr, pbyte) addByteToParsedBuffer(mr, pbyte)
mr.state = IN_PAYLOD mr.state = IN_PAYLOD
} }
break
case ESCAPED_MESSAGE_ID: case ESCAPED_MESSAGE_ID:
addByteToParsedBuffer(mr, pbyte) addByteToParsedBuffer(mr, pbyte)
mr.state = IN_PAYLOD mr.state = IN_PAYLOD
break
case IN_PAYLOD: case IN_PAYLOD:
if pbyte == ESCAPE_BYTE { if pbyte == ESCAPE_BYTE {
mr.state = ESCAPED_PAYLOAD_BYTE mr.state = ESCAPED_PAYLOAD_BYTE
@ -310,9 +276,11 @@ func parseByte(mr *MessageReceive, pbyte byte) {
} }
// normal case // normal case
addByteToParsedBuffer(mr, pbyte) addByteToParsedBuffer(mr, pbyte)
break
case ESCAPED_PAYLOAD_BYTE: case ESCAPED_PAYLOAD_BYTE:
addByteToParsedBuffer(mr, pbyte) addByteToParsedBuffer(mr, pbyte)
mr.state = IN_PAYLOD mr.state = IN_PAYLOD
break
default: default:
panic(fmt.Sprintf("unexpected main.ParserState: %#v", mr.state)) panic(fmt.Sprintf("unexpected main.ParserState: %#v", mr.state))
} }
@ -485,11 +453,9 @@ func main() {
for { for {
var input string var input string
var input2 string _, err := fmt.Scanln(&input)
_, err := fmt.Scanln(&input, &input2)
if err != nil { if err != nil {
log.Fatalf("Could not read from stdin %v", err) log.Fatalf("Could not read from stdin")
return
} }
fmt.Printf("Input %v", input) fmt.Printf("Input %v", input)
@ -502,24 +468,28 @@ func main() {
payload_buffer[0] = UART_ECHO payload_buffer[0] = UART_ECHO
n := buildMessage(payload_buffer, 1, send_buffer) n := buildMessage(payload_buffer, 1, send_buffer)
sendMessage(port, send_buffer[:n]) sendMessage(port, send_buffer[:n])
break
case "2": case "2":
payload_buffer := make([]byte, 1024) payload_buffer := make([]byte, 1024)
send_buffer := make([]byte, 1024) send_buffer := make([]byte, 1024)
payload_buffer[0] = UART_VERSION payload_buffer[0] = UART_VERSION
n := buildMessage(payload_buffer, 1, send_buffer) n := buildMessage(payload_buffer, 1, send_buffer)
sendMessage(port, send_buffer[:n]) sendMessage(port, send_buffer[:n])
break
case "3": case "3":
payload_buffer := make([]byte, 1024) payload_buffer := make([]byte, 1024)
send_buffer := make([]byte, 1024) send_buffer := make([]byte, 1024)
payload_buffer[0] = UART_CLIENT_INFO payload_buffer[0] = UART_CLIENT_INFO
n := buildMessage(payload_buffer, 1, send_buffer) n := buildMessage(payload_buffer, 1, send_buffer)
sendMessage(port, send_buffer[:n]) sendMessage(port, send_buffer[:n])
break
case "4": // start update case "4": // start update
payload_buffer := make([]byte, 1024) payload_buffer := make([]byte, 1024)
send_buffer := make([]byte, 1024) send_buffer := make([]byte, 1024)
payload_buffer[0] = UART_OTA_START payload_buffer[0] = UART_OTA_START
n := buildMessage(payload_buffer, 1, send_buffer) n := buildMessage(payload_buffer, 1, send_buffer)
sendMessage(port, send_buffer[:n]) sendMessage(port, send_buffer[:n])
break
case "5": // send payload case "5": // send payload
payload_buffer := make([]byte, 1024) payload_buffer := make([]byte, 1024)
send_buffer := make([]byte, 1024) send_buffer := make([]byte, 1024)
@ -529,25 +499,8 @@ func main() {
} }
n := buildMessage(payload_buffer, 201, send_buffer) n := buildMessage(payload_buffer, 201, send_buffer)
sendMessage(port, send_buffer[:n]) sendMessage(port, send_buffer[:n])
break
case "6": // end update case "6": // end update
case "7": // Start OTA for ESP-NOW clients
payload_buffer := make([]byte, 1024)
send_buffer := make([]byte, 1024)
payload_buffer[0] = UART_OTA_START_ESPNOW
n := buildMessage(payload_buffer, 1, send_buffer)
sendMessage(port, send_buffer[:n])
case "8": // Get Fake Client Input
payload_buffer := make([]byte, 1024)
send_buffer := make([]byte, 1024)
payload_buffer[0] = UART_CLIENT_INPUT
seed, err := strconv.Atoi(input2)
if err != nil {
log.Printf("Could not parse %v to a number", input2)
return
}
payload_buffer[1] = byte(seed)
n := buildMessage(payload_buffer, 2, send_buffer)
sendMessage(port, send_buffer[:n])
default: default:
fmt.Printf("Not a valid input") fmt.Printf("Not a valid input")
} }

View File

@ -1,7 +1,6 @@
#include "client_handler.h" #include "client_handler.h"
#include "communication_handler.h"
#include "esp_log.h" #include "esp_log.h"
#include "freertos/task.h"
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
@ -41,8 +40,6 @@ int add_client(ClientList *list, const uint8_t *client_mac) {
list->Clients[slot].slotIsUsed = true; list->Clients[slot].slotIsUsed = true;
list->Clients[slot].isAvailable = true; list->Clients[slot].isAvailable = true;
list->Clients[slot].last_seen = xTaskGetTickCount();
list->Clients[slot].retry_counter = 0;
memcpy(list->Clients[slot].macAddr, client_mac, MAC_LENGTH); memcpy(list->Clients[slot].macAddr, client_mac, MAC_LENGTH);
list->ClientCount++; list->ClientCount++;
return CLIENT_OK; return CLIENT_OK;

View File

@ -21,16 +21,6 @@ enum ClientErrors {
CLIENT_INVALID_ID = -4, CLIENT_INVALID_ID = -4,
}; };
typedef enum {
OTA_IDLE,
OTA_AWAITING_ACK,
OTA_PREPARING,
OTA_READY,
OTA_UPDATING,
OTA_FAILED,
OTA_SUCCESS,
} ota_status_t;
typedef struct { typedef struct {
bool slotIsUsed; bool slotIsUsed;
bool isAvailable; bool isAvailable;
@ -39,12 +29,6 @@ typedef struct {
TickType_t lastSuccessfullPing; TickType_t lastSuccessfullPing;
TickType_t lastPing; TickType_t lastPing;
uint16_t clientVersion; uint16_t clientVersion;
ota_status_t ota_status;
uint16_t current_block_id;
uint32_t chunk_bitmask;
uint32_t resent_chunks_counter;
uint8_t retry_counter;
TickType_t last_seen;
} ClientInfo; } ClientInfo;
typedef struct { typedef struct {

View File

@ -1,28 +1,19 @@
#include "communication_handler.h"
#include "esp_err.h" #include "esp_err.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_now.h" #include "esp_now.h"
#include "esp_ota_ops.h"
#include "esp_partition.h"
#include "esp_timer.h" #include "esp_timer.h"
#include "freertos/idf_additions.h" #include "freertos/idf_additions.h"
#include "freertos/task.h"
#include "message_structs.h"
#include "ota_update.h"
#include "client_handler.h" #include "client_handler.h"
#include "communication_handler.h"
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <sys/types.h> #include <sys/types.h>
uint8_t broadcast_address[ESP_NOW_ETH_ALEN] = {0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF};
static const char *TAG = "ALOX - COM"; static const char *TAG = "ALOX - COM";
static QueueHandle_t messageQueue = NULL;
static struct ESP_MessageBroker mr; static struct ESP_MessageBroker mr;
static QueueHandle_t ESP_recieved_message_queue; static QueueHandle_t ESP_recieved_message_queue;
@ -71,6 +62,7 @@ void ESP_MessageBrokerTask(void *param) {
ESP_MessageBrokerTaskParams_t *task_params = ESP_MessageBrokerTaskParams_t *task_params =
(ESP_MessageBrokerTaskParams_t *)param; (ESP_MessageBrokerTaskParams_t *)param;
// Extrahiere die einzelnen Parameter
QueueHandle_t msg_queue = task_params->message_queue; QueueHandle_t msg_queue = task_params->message_queue;
if (msg_queue == NULL) { if (msg_queue == NULL) {
@ -83,23 +75,40 @@ void ESP_MessageBrokerTask(void *param) {
while (1) { while (1) {
if (xQueueReceive(msg_queue, &received_msg, portMAX_DELAY)) { if (xQueueReceive(msg_queue, &received_msg, portMAX_DELAY)) {
ESP_LOGI(TAG, "Broker got message trying to relay it now");
const BaseMessage *message = (const BaseMessage *)received_msg.data; const BaseMessage *message = (const BaseMessage *)received_msg.data;
for (int i = 0; i < mr.num_direct_callbacks; i++) { ESP_LOGI(TAG, "Broker searching for command page %d",
message->commandPage);
for (int i = 0; i < mr.num_direct_callbacks;
i++) { // TODO: there should not be a loop needed here
if (mr.FunctionList[i].MSGID == message->commandPage) { if (mr.FunctionList[i].MSGID == message->commandPage) {
mr.FunctionList[i].callback(&received_msg.esp_now_info, mr.FunctionList[i].callback(&received_msg.esp_now_info,
received_msg.data, received_msg.data_len); received_msg.data, received_msg.data_len);
ESP_LOGI(TAG, "Broker found matching msgid %d",
mr.FunctionList[i].MSGID);
free_ESPNOW_MessageInfo(&received_msg); free_ESPNOW_MessageInfo(&received_msg);
} }
} }
for (int i = 0; i < mr.num_direct_callbacks; i++) {
// if (mr.FunctionList[i].MSGID == received_msg.msgid) {
// TODO: Not yet implemented
// Only send data to task, task should be created beforhead and wait
// for new data in the queue.
//}
}
} }
} }
} }
QueueHandle_t messageQueue = NULL; // Warteschlange für empfangene Nachrichten
static bool hasMaster = false; static bool hasMaster = false;
static ClientList *esp_client_list; static ClientList *esp_client_list;
static uint8_t channelNumber = 0; static uint8_t channelNumber = 0;
#define MAC_STRING_BUFFER_SIZE 18
int init_com(ClientList *clients, uint8_t wifi_channel) { int init_com(ClientList *clients, uint8_t wifi_channel) {
// Initialisiere die Kommunikations-Warteschlange
messageQueue = xQueueCreate(MESSAGE_QUEUE_SIZE, sizeof(ESPNOW_MessageInfo)); messageQueue = xQueueCreate(MESSAGE_QUEUE_SIZE, sizeof(ESPNOW_MessageInfo));
if (messageQueue == NULL) { if (messageQueue == NULL) {
ESP_LOGE(TAG, "Message queue creation failed"); ESP_LOGE(TAG, "Message queue creation failed");
@ -116,13 +125,13 @@ int add_peer(uint8_t *macAddr) {
esp_now_peer_info_t peerInfo = { esp_now_peer_info_t peerInfo = {
.channel = channelNumber, .channel = channelNumber,
.ifidx = ESP_IF_WIFI_STA, .ifidx = ESP_IF_WIFI_STA,
.encrypt = false, .encrypt = false, // Keine Verschlüsselung // TODO: should be changed
}; };
memcpy(peerInfo.peer_addr, macAddr, ESP_NOW_ETH_ALEN); memcpy(peerInfo.peer_addr, macAddr, ESP_NOW_ETH_ALEN);
esp_err_t result = esp_now_add_peer(&peerInfo); esp_err_t result = esp_now_add_peer(&peerInfo);
if (result == ESP_OK) { if (result == ESP_OK) {
ESP_LOGI(TAG, "Peer added"); ESP_LOGI(TAG, "Peer added: " MACSTR, MAC2STR(peerInfo.peer_addr));
if (!IS_BROADCAST_ADDR(macAddr)) { if (!IS_BROADCAST_ADDR(macAddr)) {
int ret = add_client(esp_client_list, peerInfo.peer_addr); int ret = add_client(esp_client_list, peerInfo.peer_addr);
@ -138,6 +147,7 @@ int add_peer(uint8_t *macAddr) {
ESP_LOGW(TAG, "Peer already exists."); ESP_LOGW(TAG, "Peer already exists.");
int id = get_client_id(esp_client_list, peerInfo.peer_addr); int id = get_client_id(esp_client_list, peerInfo.peer_addr);
if (id >= 0) { if (id >= 0) {
ESP_LOGI(TAG, "Client found again, welcome back!");
esp_client_list->Clients[id].isAvailable = true; esp_client_list->Clients[id].isAvailable = true;
} }
} else { } else {
@ -170,6 +180,8 @@ void master_broadcast_task(void *param) {
ESP_ERROR_CHECK(esp_now_send(broadcast_address, (uint8_t *)&message, ESP_ERROR_CHECK(esp_now_send(broadcast_address, (uint8_t *)&message,
sizeof(BaseMessage))); sizeof(BaseMessage)));
// ESP_LOGI(TAG, "Broadcast Message sent");
vTaskDelay(pdMS_TO_TICKS(5000)); vTaskDelay(pdMS_TO_TICKS(5000));
} }
} }
@ -182,6 +194,7 @@ void master_broadcast_ping(void *param) {
MessageBuilder(PingPage, *(PayloadUnion *)&payload, sizeof(payload)); MessageBuilder(PingPage, *(PayloadUnion *)&payload, sizeof(payload));
ESP_ERROR_CHECK(esp_now_send(broadcast_address, (uint8_t *)&message, ESP_ERROR_CHECK(esp_now_send(broadcast_address, (uint8_t *)&message,
sizeof(BaseMessage))); sizeof(BaseMessage)));
// ESP_LOGI(TAG, "Broadcast PING Message sent");
vTaskDelay(pdMS_TO_TICKS(2500)); vTaskDelay(pdMS_TO_TICKS(2500));
} }
} }
@ -190,12 +203,15 @@ void master_ping_task(void *param) {
while (1) { while (1) {
for (size_t i = 0; i < MAX_CLIENTS; i++) { for (size_t i = 0; i < MAX_CLIENTS; i++) {
if (esp_client_list->Clients[i].isAvailable) { if (esp_client_list->Clients[i].isAvailable) {
ESP_LOGI(TAG, "SEND PING TO %zu: " MACSTR, i,
MAC2STR(esp_client_list->Clients[i].macAddr));
PingPayload payload = {}; PingPayload payload = {};
payload.timestamp = esp_timer_get_time(); payload.timestamp = esp_timer_get_time();
BaseMessage message = MessageBuilder( BaseMessage message = MessageBuilder(
PingPage, *(PayloadUnion *)&payload, sizeof(payload)); PingPage, *(PayloadUnion *)&payload, sizeof(payload));
esp_now_send(esp_client_list->Clients[i].macAddr, (uint8_t *)&message, esp_now_send(esp_client_list->Clients[i].macAddr, (uint8_t *)&message,
sizeof(BaseMessage)); sizeof(BaseMessage));
ESP_LOGI(TAG, "SENDING PING!!!!");
} }
} }
vTaskDelay(pdMS_TO_TICKS(1000)); vTaskDelay(pdMS_TO_TICKS(1000));
@ -205,7 +221,8 @@ void master_ping_task(void *param) {
void master_StatusCallback(const esp_now_recv_info_t *esp_now_info, void master_StatusCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
const BaseMessage *message = (const BaseMessage *)data; const BaseMessage *message = (const BaseMessage *)data;
ESP_LOGI(TAG, "SRC");
ESP_LOGI(TAG, "SRC " MACSTR, MAC2STR(esp_now_info->src_addr));
ESP_LOGI(TAG, ESP_LOGI(TAG,
"Status Message Received: status: %d, runningPartition: %d, uptime: " "Status Message Received: status: %d, runningPartition: %d, uptime: "
"%d, version: %d", "%d, version: %d",
@ -218,45 +235,81 @@ void master_StatusCallback(const esp_now_recv_info_t *esp_now_info,
void master_RegisterCallback(const esp_now_recv_info_t *esp_now_info, void master_RegisterCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
BaseMessage replyMessage = {}; BaseMessage replyMessage = {};
const BaseMessage *message = (const BaseMessage *)data;
ESP_LOGI(TAG, "WILL REGISTER DEVICE");
esp_now_peer_info_t checkPeerInfo; esp_now_peer_info_t checkPeerInfo;
esp_err_t checkPeer = esp_err_t checkPeer =
esp_now_get_peer(esp_now_info->src_addr, &checkPeerInfo); esp_now_get_peer(esp_now_info->src_addr, &checkPeerInfo);
switch (checkPeer) { switch (checkPeer) {
case (ESP_OK): case (ESP_OK):
ESP_LOGI(TAG, "CLIENT BEKANNT");
int id = get_client_id(esp_client_list, esp_now_info->src_addr); int id = get_client_id(esp_client_list, esp_now_info->src_addr);
esp_client_list->Clients[id].isAvailable = true; esp_client_list->Clients[id].isAvailable = true;
esp_client_list->Clients[id].lastSuccessfullPing = xTaskGetTickCount(); esp_client_list->Clients[id].lastSuccessfullPing = xTaskGetTickCount();
ESP_LOGI(TAG, "Updated client %d last ping time to %lu", id,
esp_client_list->Clients[id].lastSuccessfullPing);
break;
case (ESP_ERR_ESPNOW_NOT_INIT):
ESP_LOGI(TAG, "Not initalised");
break;
case (ESP_ERR_ESPNOW_ARG):
ESP_LOGI(TAG, "ESP ERR ESPNOW_ARG");
break; break;
case (ESP_ERR_ESPNOW_NOT_FOUND): case (ESP_ERR_ESPNOW_NOT_FOUND):
add_peer(esp_now_info->src_addr); ESP_LOGI(TAG, "CLIENT WIRD IN DIE LISTE AUFGENOMMEN " MACSTR,
MAC2STR(esp_now_info->src_addr));
int peer_err = add_peer(esp_now_info->src_addr);
if (peer_err < 0) {
ESP_LOGE(TAG, "Could not add ESP TO ClientList %d", peer_err);
}
ESP_LOGI(TAG, "FRAGE CLIENT STATUS AN");
GetStatusPayload payload = {}; GetStatusPayload payload = {};
replyMessage = MessageBuilder(GetStatusPage, *(PayloadUnion *)&payload, replyMessage = MessageBuilder(GetStatusPage, *(PayloadUnion *)&payload,
sizeof(payload)); sizeof(payload));
esp_now_send(esp_now_info->src_addr, (uint8_t *)&replyMessage, esp_err_t err = esp_now_send(esp_now_info->src_addr,
sizeof(BaseMessage)); (uint8_t *)&replyMessage, sizeof(BaseMessage));
if (err != ESP_OK) {
ESP_LOGE(TAG, "Could not send Message Error %s", esp_err_to_name(err));
}
break; break;
default: default:
break; ESP_LOGI(TAG, "Unknown Message %i", checkPeer);
} }
} }
void master_pingCallback(const esp_now_recv_info_t *esp_now_info, void master_pingCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
BaseMessage replyMessage = {};
const BaseMessage *message = (const BaseMessage *)data; const BaseMessage *message = (const BaseMessage *)data;
ESP_LOGI(TAG, "GOT PING MESSAGE");
uint32_t currentTime = esp_timer_get_time(); uint32_t currentTime = esp_timer_get_time();
uint32_t diff = currentTime - message->payload.ping_payload.timestamp; uint32_t diff = currentTime - message->payload.ping_payload.timestamp;
ESP_LOGI(TAG, "Start: %lu, End: %lu, Diff: %lu, Ping: %lu",
message->payload.ping_payload.timestamp, currentTime, diff,
diff / 1000); // ping in ms
int id = get_client_id(esp_client_list, esp_now_info->src_addr); int id = get_client_id(esp_client_list, esp_now_info->src_addr);
if (id >= 0) { if (id >= 0) {
esp_client_list->Clients[id].lastSuccessfullPing = xTaskGetTickCount(); esp_client_list->Clients[id].lastSuccessfullPing = xTaskGetTickCount();
esp_client_list->Clients[id].lastPing = (diff / 1000); esp_client_list->Clients[id].lastPing = (diff / 1000);
ESP_LOGI(TAG, "Updated client %d: " MACSTR " last ping time to %lu", id,
MAC2STR(esp_now_info->src_addr),
esp_client_list->Clients[id].lastSuccessfullPing);
} }
} }
void master_broadcastCallback(const esp_now_recv_info_t *esp_now_info, void master_broadcastCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) {} const uint8_t *data, int data_len) {
ESP_LOGI(TAG,
"Master should not recieve Broadcast is there another master "
"Calling got message from " MACSTR,
MAC2STR(esp_now_info->src_addr));
}
void ESPNOW_RegisterMasterCallbacks() { void ESPNOW_RegisterMasterCallbacks() {
ESP_RegisterFunction(StatusPage, master_StatusCallback); ESP_RegisterFunction(StatusPage, master_StatusCallback);
@ -267,22 +320,31 @@ void ESPNOW_RegisterMasterCallbacks() {
void slave_broadcastCallback(const esp_now_recv_info_t *esp_now_info, void slave_broadcastCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
BaseMessage replyMessage = {};
const BaseMessage *message = (const BaseMessage *)data;
ESP_LOGI(TAG, "GOT BROADCAST MESSAGE");
if (!hasMaster) { if (!hasMaster) {
if (IS_BROADCAST_ADDR(esp_now_info->des_addr)) { if (IS_BROADCAST_ADDR(esp_now_info->des_addr)) {
ESP_LOGI(TAG, "GOT BROADCAST MESSAGE ATTEMPTING TO REGISTER TO MASTER!");
add_peer(esp_now_info->src_addr); add_peer(esp_now_info->src_addr);
BaseMessage replyMessage = {};
replyMessage = replyMessage =
MessageBuilder(RegisterPage, *(PayloadUnion *)&replyMessage.payload, MessageBuilder(RegisterPage, *(PayloadUnion *)&message->payload,
sizeof(replyMessage.payload)); sizeof(message->payload));
esp_now_send(esp_now_info->src_addr, (uint8_t *)&replyMessage, ESP_ERROR_CHECK(esp_now_send(esp_now_info->src_addr,
sizeof(BaseMessage)); (uint8_t *)&replyMessage,
sizeof(BaseMessage)));
hasMaster = true; hasMaster = true;
} }
} else {
ESP_LOGI(TAG, "Already have master wont register by the new one");
} }
} }
void slave_getstatusCallback(const esp_now_recv_info_t *esp_now_info, void slave_getstatusCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
BaseMessage replyMessage = {};
const BaseMessage *message = (const BaseMessage *)data;
StatusPayload payload = { StatusPayload payload = {
.status = 1, .status = 1,
.runningPartition = 1, .runningPartition = 1,
@ -290,22 +352,24 @@ void slave_getstatusCallback(const esp_now_recv_info_t *esp_now_info,
.version = 0x0002, .version = 0x0002,
}; };
BaseMessage replyMessage = replyMessage =
MessageBuilder(StatusPage, *(PayloadUnion *)&payload, sizeof(payload)); MessageBuilder(StatusPage, *(PayloadUnion *)&payload, sizeof(payload));
esp_now_send(esp_now_info->src_addr, (uint8_t *)&replyMessage, ESP_ERROR_CHECK(esp_now_send(esp_now_info->src_addr, (uint8_t *)&replyMessage,
sizeof(BaseMessage)); sizeof(BaseMessage)));
} }
void slave_pingCallback(const esp_now_recv_info_t *esp_now_info, void slave_pingCallback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
if (!hasMaster) if (!hasMaster)
return; return;
BaseMessage replyMessage = {};
const BaseMessage *message = (const BaseMessage *)data; const BaseMessage *message = (const BaseMessage *)data;
BaseMessage replyMessage = MessageBuilder(
PingPage, *(PayloadUnion *)&message->payload, sizeof(message->payload)); ESP_LOGI(TAG, "GOT PING MESSAGE");
esp_now_send(esp_now_info->src_addr, (uint8_t *)&replyMessage, replyMessage = MessageBuilder(PingPage, *(PayloadUnion *)&message->payload,
sizeof(BaseMessage)); sizeof(message->payload));
ESP_ERROR_CHECK(esp_now_send(esp_now_info->src_addr, (uint8_t *)&replyMessage,
sizeof(BaseMessage)));
} }
void ESPNOW_RegisterSlaveCallbacks() { void ESPNOW_RegisterSlaveCallbacks() {
@ -316,23 +380,30 @@ void ESPNOW_RegisterSlaveCallbacks() {
void master_receive_callback(const esp_now_recv_info_t *esp_now_info, void master_receive_callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
ESP_LOGI(TAG, "MASTER GOT MESSAGE");
// Allokiere Speicher für die Daten und kopiere sie
uint8_t *copied_data = (uint8_t *)malloc(data_len); uint8_t *copied_data = (uint8_t *)malloc(data_len);
if (copied_data == NULL) { if (copied_data == NULL) {
ESP_LOGE(TAG, "Failed to allocate memory for message data.");
return; return;
} }
memcpy(copied_data, data, data_len); memcpy(copied_data, data, data_len);
// Fülle die neue Struktur mit kopierten Daten
ESPNOW_MessageInfo msg_info; ESPNOW_MessageInfo msg_info;
msg_info.esp_now_info.src_addr = malloc(6); msg_info.esp_now_info.src_addr = malloc(6);
if (msg_info.esp_now_info.src_addr) { if (msg_info.esp_now_info.src_addr) {
memcpy(msg_info.esp_now_info.src_addr, esp_now_info->src_addr, 6); memcpy(msg_info.esp_now_info.src_addr, esp_now_info->src_addr, 6);
} }
// Speicher für des_addr kopieren
msg_info.esp_now_info.des_addr = malloc(6); msg_info.esp_now_info.des_addr = malloc(6);
if (msg_info.esp_now_info.des_addr) { if (msg_info.esp_now_info.des_addr) {
memcpy(msg_info.esp_now_info.des_addr, esp_now_info->des_addr, 6); memcpy(msg_info.esp_now_info.des_addr, esp_now_info->des_addr, 6);
} }
// rx_ctrl Struktur kopieren
msg_info.esp_now_info.rx_ctrl = malloc(sizeof(wifi_pkt_rx_ctrl_t)); msg_info.esp_now_info.rx_ctrl = malloc(sizeof(wifi_pkt_rx_ctrl_t));
if (msg_info.esp_now_info.rx_ctrl) { if (msg_info.esp_now_info.rx_ctrl) {
memcpy(msg_info.esp_now_info.rx_ctrl, esp_now_info->rx_ctrl, memcpy(msg_info.esp_now_info.rx_ctrl, esp_now_info->rx_ctrl,
@ -342,47 +413,48 @@ void master_receive_callback(const esp_now_recv_info_t *esp_now_info,
msg_info.data = copied_data; msg_info.data = copied_data;
msg_info.data_len = data_len; msg_info.data_len = data_len;
xQueueSend(ESP_recieved_message_queue, &msg_info, portMAX_DELAY); if (xQueueSend(ESP_recieved_message_queue, &msg_info, portMAX_DELAY) !=
pdPASS) {
// Fehlerbehandlung: Queue voll oder Senden fehlgeschlagen
ESP_LOGE(TAG, "Failed to send parsed message to queue.");
}
return;
} }
void client_receive_callback(const esp_now_recv_info_t *esp_now_info, void client_receive_callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) { const uint8_t *data, int data_len) {
ESP_LOGI(TAG, "SLAVE GOT MESSAGE");
ESP_LOGI(TAG, "Received message from: " MACSTR,
MAC2STR(esp_now_info->src_addr));
uint8_t *copied_data = (uint8_t *)malloc(data_len); uint8_t *copied_data = (uint8_t *)malloc(data_len);
if (copied_data == NULL) { if (copied_data == NULL) {
ESP_LOGE(TAG, "Failed to allocate memory for message data.");
return; return;
} }
memcpy(copied_data, data, data_len); memcpy(copied_data, data, data_len);
// Fülle die neue Struktur mit kopierten Daten
ESPNOW_MessageInfo msg_info; ESPNOW_MessageInfo msg_info;
// Initialize the esp_now_info struct to zeros memcpy(&msg_info.esp_now_info, esp_now_info, sizeof(esp_now_recv_info_t));
memset(&msg_info.esp_now_info, 0, sizeof(esp_now_recv_info_t));
// Now, allocate and copy the data pointed to by the pointers within
// esp_now_info src_addr
msg_info.esp_now_info.src_addr = malloc(6);
if (msg_info.esp_now_info.src_addr) {
memcpy(msg_info.esp_now_info.src_addr, esp_now_info->src_addr, 6);
} else {
free(copied_data);
return;
}
// des_addr
msg_info.esp_now_info.des_addr = malloc(6);
if (msg_info.esp_now_info.des_addr) {
memcpy(msg_info.esp_now_info.des_addr, esp_now_info->des_addr, 6);
} else {
free(msg_info.esp_now_info.src_addr);
free(copied_data);
return;
}
msg_info.esp_now_info.rx_ctrl = NULL; // Set to NULL as we are not copying it
msg_info.data = copied_data; msg_info.data = copied_data;
msg_info.data_len = data_len; msg_info.data_len = data_len;
xQueueSend(ESP_recieved_message_queue, &msg_info, portMAX_DELAY); if (xQueueSend(ESP_recieved_message_queue, &msg_info, portMAX_DELAY) !=
pdPASS) {
// Fehlerbehandlung: Queue voll oder Senden fehlgeschlagen
ESP_LOGE(TAG, "Failed to send parsed message to queue.");
}
return;
}
void client_data_sending_task(void *param) {
while (1) {
const char *dataToSend = "DATA:42";
ESP_LOGI(TAG, "SEND DATA");
esp_now_send(NULL, (uint8_t *)dataToSend, strlen(dataToSend));
vTaskDelay(pdMS_TO_TICKS(5000));
}
} }
void client_monitor_task(void *pvParameters) { void client_monitor_task(void *pvParameters) {
@ -399,34 +471,11 @@ void client_monitor_task(void *pvParameters) {
if (time_diff > timeout_ticks) { if (time_diff > timeout_ticks) {
esp_client_list->Clients[i].isAvailable = false; esp_client_list->Clients[i].isAvailable = false;
ESP_LOGW(TAG, "Client %d (MAC: " MACSTR ") is unavailable",
MAC2STR(esp_client_list->Clients[i].macAddr));
} }
} }
} }
vTaskDelay(interval_ticks); vTaskDelay(interval_ticks);
} }
} }
const esp_partition_t *ota_update_partition = NULL;
void ESPNOW_RegisterOTAMaster() {
// Observe this States for all Slaves in ClientList
// OTA_SLAVE_PREPARING
// OTA_SLAVE_READY
// OTA_SLAVE_ERROR
// OTA_SLAVE_WRITE_FINISHED
// OTA_SLAVE_FINISHED
ESP_RegisterFunction(OTA_PREPARE_ACKNOWLEDGED,
master_ota_prepare_acknowledge_callback);
ESP_RegisterFunction(OTA_READY_TO_RECEIVE,
master_ota_ready_to_recieve_callback);
ESP_RegisterFunction(OTA_UPDATE_SLAVE_ACKED,
master_ota_update_slave_acknowledge_callback);
}
void ESPNOW_RegisterOTASlave() {
ESP_RegisterFunction(OTA_PREPARE_FOR_UPDATE, slave_Prep_Upgrade_Callback);
ESP_RegisterFunction(OTA_CHUNK, slave_Update_Chunk_Callback);
ESP_RegisterFunction(OTA_FINISH_UPDATE, slave_Update_Finished_Callback);
}

View File

@ -12,30 +12,91 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <sys/types.h> #include <sys/types.h>
#include "esp_partition.h"
#include "message_structs.h"
#define BROADCAST_INTERVAL_MS 500 #define BROADCAST_INTERVAL_MS 500
#define CLIENT_TIMEOUT_MS 5000 // 5 Sekunden Timeout #define CLIENT_TIMEOUT_MS 5000 // 5 Sekunden Timeout
#define CHECK_INTERVAL_MS 1000 // Jede Sekunde überprüfen #define CHECK_INTERVAL_MS 1000 // Jede Sekunde überprüfen
static uint8_t broadcast_address[ESP_NOW_ETH_ALEN] = {0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF};
#define IS_BROADCAST_ADDR(addr) \
(memcmp(addr, broadcast_address, ESP_NOW_ETH_ALEN) == 0)
extern uint8_t broadcast_address[ESP_NOW_ETH_ALEN]; #define MAC2STR(a) (a)[0], (a)[1], (a)[2], (a)[3], (a)[4], (a)[5]
#define IS_BROADCAST_ADDR(addr) (memcmp(addr, broadcast_address, ESP_NOW_ETH_ALEN) == 0) #define MACSTR "%02X:%02X:%02X:%02X:%02X:%02X"
#define MESSAGE_QUEUE_SIZE 10 #define MESSAGE_QUEUE_SIZE 10
typedef enum {
OTA_PREP_UPGRADE,
OTA_SEND_PAYLOAD,
OTA_WRITE_UPDATE_BUFFER,
OTA_SEND_MISSING,
OTA_UPDATE_INFO,
OTA_END_UPGRADE,
StatusPage,
GetStatusPage,
ConfigPage,
PingPage,
BroadCastPage,
RegisterPage,
} CommandPages;
typedef struct __attribute__((packed)) {
} OTA_PREP_UPGRADE_Payload;
typedef struct __attribute__((packed)) {
} OTA_SEND_PAYLOAD_Payload;
typedef struct __attribute__((packed)) {
} OTA_WRITE_UPDATE_BUFFER_Payload;
typedef struct __attribute__((packed)) {
} OTA_SEND_MISSING_Payload;
typedef struct __attribute__((packed)) {
} OTA_UPDATE_INFO_Payload;
typedef struct __attribute__((packed)) {
} OTA_END_UPGRADE_Payload;
typedef struct __attribute__((packed)) {
uint16_t version; // software version
uint8_t runningPartition;
uint8_t status;
uint32_t uptime;
} StatusPayload;
typedef struct __attribute__((packed)) {
} GetStatusPayload;
typedef struct __attribute__((packed)) {
uint8_t timeslot;
} ConfigPayload;
typedef struct __attribute__((packed)) {
uint32_t timestamp;
} PingPayload;
typedef struct __attribute__((packed)) {
} BroadCastPayload;
typedef struct __attribute__((packed)) {
bool familierClient;
} RegisterPayload;
// TODO: Check checksum fields
typedef struct __attribute__((packed)) {
uint16_t length; // length of complete firmware
uint8_t checksum; // checksum of firmware
} FirmwarePrepPayload;
// TODO: Check checksum fields
typedef struct __attribute__((packed)) {
uint8_t length;
uint8_t checksum;
uint32_t address;
uint8_t payload[240]; // TODO: need a way to figure out a safe value for this
} FirmwarePayload;
typedef union __attribute__((packed)) { typedef union __attribute__((packed)) {
OTA_PREPARE_FOR_UPDATE_Payload ota_prepare_for_update_payload;
OTA_PREPARE_ACKNOWLEDGED_Payload ota_prepare_acknowledged_payload;
OTA_READY_TO_RECEIVE_Payload ota_ready_to_receive_payload;
OTA_CHUNK_Payload ota_chunk_payload;
OTA_REQUEST_BLOCK_STATUS_Payload ota_request_block_status_payload;
OTA_BLOCK_STATUS_REPORT_Payload ota_block_status_report_payload;
OTA_COMMIT_BLOCK_Payload ota_commit_block_payload;
OTA_BLOCK_COMMITTED_Payload ota_block_committed_payload;
OTA_FINISH_UPDATE_Payload ota_finish_update_payload;
OTA_UPDATE_STATUS_Payload ota_update_status_payload;
StatusPayload status_payload; StatusPayload status_payload;
ConfigPayload config_payload; ConfigPayload config_payload;
PingPayload ping_payload; PingPayload ping_payload;
@ -95,8 +156,6 @@ void ESP_MessageBrokerTask(void *param);
void ESPNOW_RegisterMasterCallbacks(); void ESPNOW_RegisterMasterCallbacks();
void ESPNOW_RegisterSlaveCallbacks(); void ESPNOW_RegisterSlaveCallbacks();
void ESPNOW_RegisterOTAMaster();
void ESPNOW_RegisterOTASlave();
int init_com(ClientList *clients, uint8_t wifi_channel); int init_com(ClientList *clients, uint8_t wifi_channel);
int getNextFreeClientId(); int getNextFreeClientId();
@ -114,9 +173,6 @@ void client_receive_callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len); const uint8_t *data, int data_len);
void client_data_sending_task(void *param); void client_data_sending_task(void *param);
void client_send_random_data_task(void *param); void client_send_random_data_task(void *param);
void client_monitor_task(void *pvParameters); void client_monitor_task(void *pvParameters);
void send_ota_block_chunks(uint8_t client_id, uint16_t block_id);
#endif #endif

View File

@ -1,11 +1,7 @@
#include "client_handler.h" #include "client_handler.h"
#include "driver/gpio.h" #include "driver/gpio.h"
#include "driver/uart.h" #include "driver/uart.h"
#include "esp_app_desc.h"
#include "esp_app_format.h"
#include "esp_err.h" #include "esp_err.h"
#include "esp_flash_partitions.h"
#include "esp_image_format.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_log_buffer.h" #include "esp_log_buffer.h"
#include "esp_ota_ops.h" #include "esp_ota_ops.h"
@ -25,11 +21,9 @@
#include "main.h" #include "main.h"
#include "ota_update.h" #include "ota_update.h"
#include "uart_handler.h" #include "uart_handler.h"
#include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <stdlib.h>
#include <string.h> #include <string.h>
#include <sys/types.h> #include <sys/types.h>
@ -40,72 +34,12 @@ static const char *TAG = "ALOX - MAIN";
static const uint16_t version = 0x0001; static const uint16_t version = 0x0001;
static uint8_t send_message_buffer[1024]; static uint8_t send_message_buffer[1024];
static uint8_t send_message_payload_buffer[512]; static uint8_t send_message_payload_buffer[512];
uint32_t g_uart_firmware_total_size = 0;
static MessageBrokerTaskParams_t broker_task_params; static MessageBrokerTaskParams_t broker_task_params;
static MasterOTA_TaskParams_t master_ota_task_params;
static ESP_MessageBrokerTaskParams_t esp_broker_task_params; static ESP_MessageBrokerTaskParams_t esp_broker_task_params;
ClientList clientList = {.Clients = {{0}}, .ClientCount = 0}; ClientList clientList = {.Clients = {{0}}, .ClientCount = 0};
size_t build_ClientInfoPart(uint8_t clientid, float_t lagex, float_t lagey,
int32_t bitmask, uint8_t *outputArray,
size_t outputArrayOffset, size_t outputArraySize) {
size_t offset = outputArrayOffset;
memcpy(&outputArray[offset], &clientid, sizeof(clientid));
offset += sizeof(clientid);
// lagex (typischerweise 4 Bytes)
memcpy(&outputArray[offset], &lagex, sizeof(lagex));
offset += sizeof(lagex);
// lagey (typischerweise 4 Bytes)
memcpy(&outputArray[offset], &lagey, sizeof(lagey));
offset += sizeof(lagey);
// bitmask (4 Bytes)
memcpy(&outputArray[offset], &bitmask, sizeof(bitmask));
offset += sizeof(bitmask);
return offset - outputArrayOffset;
}
void fakeDataCallback(uint8_t msgid, const uint8_t *payload, size_t payload_len,
uint8_t *send_payload_buffer,
size_t send_payload_buffer_size, uint8_t *send_buffer,
size_t send_buffer_size) {
uint8_t seed = payload[1];
ESP_LOGI(TAG, "Sending Fake Client Infos with seed %d", seed);
srand(seed);
size_t offset = 1;
send_payload_buffer[0] = 3; // Client Count
offset +=
build_ClientInfoPart(1, rand() * 1.0, rand() * 1.0, rand() * 1,
send_payload_buffer, 1, send_payload_buffer_size);
offset += build_ClientInfoPart(2, rand() * 2.0, rand() * 2.0, rand() * 2,
send_payload_buffer, offset,
send_payload_buffer_size);
offset += build_ClientInfoPart(3, rand() * 3.0, rand() * 3.0, rand() * 3,
send_payload_buffer, offset,
send_payload_buffer_size);
int len = build_message(UART_CLIENT_INPUT, send_payload_buffer, offset,
send_buffer, send_buffer_size);
if (len < 0) {
ESP_LOGE(TAG,
"Error Building UART Message: payload_len, %d, sendbuffer_size: "
"%d, mes_len(error): %d",
payload_len, send_buffer_size, len);
return;
}
uart_write_bytes(MASTER_UART, send_buffer, len);
}
void echoCallback(uint8_t msgid, const uint8_t *payload, size_t payload_len, void echoCallback(uint8_t msgid, const uint8_t *payload, size_t payload_len,
uint8_t *send_payload_buffer, size_t send_payload_buffer_size, uint8_t *send_payload_buffer, size_t send_payload_buffer_size,
uint8_t *send_buffer, size_t send_buffer_size) { uint8_t *send_buffer, size_t send_buffer_size) {
@ -170,9 +104,27 @@ void clientInfoCallback(uint8_t msgid, const uint8_t *payload,
send_payload_buffer[0] = clientList.ClientCount; send_payload_buffer[0] = clientList.ClientCount;
uint8_t offsetMult = 0; uint8_t offsetMult = 0;
uint8_t used_slots = 0;
for (int i = 0; i < MAX_CLIENTS; i++) { for (int i = 0; i < MAX_CLIENTS; i++) {
if (clientList.Clients[i].slotIsUsed) { if (clientList.Clients[i].slotIsUsed) {
used_slots++;
}
}
uint8_t loop_sanity_counter = 0;
for (int i = 0; i < MAX_CLIENTS; i++) {
if (clientList.Clients[i].slotIsUsed) {
loop_sanity_counter++;
if (loop_sanity_counter > clientList.ClientCount) {
ESP_LOGE("SPECIAL",
"ERROR SANITY CHECK FAILED: loop_sanity_count: %d, "
"client_count: %d",
loop_sanity_counter, clientList.ClientCount);
}
size_t offset = 1 + (entryLength * offsetMult++); size_t offset = 1 + (entryLength * offsetMult++);
ESP_LOGE("SPECIAL", "OFFSET %d", offset);
send_payload_buffer[offset] = i; send_payload_buffer[offset] = i;
send_payload_buffer[offset + 1] = clientList.Clients[i].isAvailable; send_payload_buffer[offset + 1] = clientList.Clients[i].isAvailable;
send_payload_buffer[offset + 2] = clientList.Clients[i].slotIsUsed; send_payload_buffer[offset + 2] = clientList.Clients[i].slotIsUsed;
@ -190,6 +142,8 @@ void clientInfoCallback(uint8_t msgid, const uint8_t *payload,
int len = build_message(UART_CLIENT_INFO, send_payload_buffer, int len = build_message(UART_CLIENT_INFO, send_payload_buffer,
needed_buffer_size, send_buffer, send_buffer_size); needed_buffer_size, send_buffer, send_buffer_size);
// ESP_LOG_BUFFER_HEX("SEND BUFFER: ", send_buffer, send_buffer_size);
if (len < 0) { if (len < 0) {
ESP_LOGE(TAG, ESP_LOGE(TAG,
"Error Building UART Message: payload_len, %d, sendbuffer_size: " "Error Building UART Message: payload_len, %d, sendbuffer_size: "
@ -200,69 +154,6 @@ void clientInfoCallback(uint8_t msgid, const uint8_t *payload,
uart_write_bytes(MASTER_UART, send_buffer, len); uart_write_bytes(MASTER_UART, send_buffer, len);
} }
bool g_ota_in_progress = false;
void ota_monitor_task(void *param) {
const TickType_t timeout = pdMS_TO_TICKS(10000); // 10 seconds
while (g_ota_in_progress) {
bool all_done = true;
for (int i = 0; i < MAX_CLIENTS; i++) {
if (clientList.Clients[i].slotIsUsed) {
if (clientList.Clients[i].ota_status != OTA_SUCCESS &&
clientList.Clients[i].ota_status != OTA_FAILED) {
all_done = false;
if ((xTaskGetTickCount() - clientList.Clients[i].last_seen) >
timeout) {
ESP_LOGE(TAG, "Client %d timed out", i);
clientList.Clients[i].ota_status = OTA_FAILED;
}
}
}
}
if (all_done) {
g_ota_in_progress = false;
}
vTaskDelay(pdMS_TO_TICKS(1000));
}
ESP_LOGI(TAG, "OTA Operation Finished.");
for (int i = 0; i < MAX_CLIENTS; i++) {
if (clientList.Clients[i].slotIsUsed) {
ESP_LOGI(TAG, "Client %d [MAC: " MACSTR "]: %s, Resent Chunks: %d", i,
MAC2STR(clientList.Clients[i].macAddr),
clientList.Clients[i].ota_status == OTA_SUCCESS ? "SUCCESS"
: "FAILED",
clientList.Clients[i].resent_chunks_counter);
}
}
vTaskDelete(NULL);
}
void send_client_ota_start_message(uint8_t clientID, uint32_t app_size) {
BaseMessage message = {};
OTA_PREPARE_FOR_UPDATE_Payload ota_payload = {
.total_size = app_size,
};
message = MessageBuilder(OTA_PREPARE_FOR_UPDATE,
*(PayloadUnion *)&ota_payload, sizeof(ota_payload));
esp_err_t err = esp_now_send(clientList.Clients[clientID].macAddr,
(uint8_t *)&message, sizeof(BaseMessage));
if (err != ESP_OK) {
ESP_LOGE(TAG, "Could not send OTA PREPARE FOR UPDATE to " MACSTR ", %s",
MAC2STR(clientList.Clients[clientID].macAddr),
esp_err_to_name(err));
} else {
ESP_LOGI(TAG, "Sent OTA PREPARE FOR UPDATE to " MACSTR,
MAC2STR(clientList.Clients[clientID].macAddr));
}
}
void app_main(void) { void app_main(void) {
ESP_LOGI(TAG, "Starting Alox Powerpod Version %d Build: %s", version, ESP_LOGI(TAG, "Starting Alox Powerpod Version %d Build: %s", version,
BUILD_GIT_HASH); BUILD_GIT_HASH);
@ -275,10 +166,12 @@ void app_main(void) {
} }
ESP_ERROR_CHECK(ret); ESP_ERROR_CHECK(ret);
// GPIO-Pin für Moduserkennung
gpio_reset_pin(MASTER_MODE_PIN); gpio_reset_pin(MASTER_MODE_PIN);
gpio_set_direction(MASTER_MODE_PIN, GPIO_MODE_INPUT); gpio_set_direction(MASTER_MODE_PIN, GPIO_MODE_INPUT);
bool isMaster = (gpio_get_level(MASTER_MODE_PIN) == 0); bool isMaster = (gpio_get_level(MASTER_MODE_PIN) == 0);
// ESP-NOW Initialisieren
ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default()); ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
@ -305,27 +198,65 @@ void app_main(void) {
ESP_LOGE(TAG, "Could not Init ESP NOW Communication!"); ESP_LOGE(TAG, "Could not Init ESP NOW Communication!");
} }
esp_partition_iterator_t partition_iter = esp_partition_find(
ESP_PARTITION_TYPE_ANY, ESP_PARTITION_SUBTYPE_ANY, NULL);
while (partition_iter != NULL) {
const esp_partition_t *part1 = esp_partition_get(partition_iter);
ESP_LOGI(TAG, "Partition: %s, Address: %d, Size %d", part1->label,
part1->address, part1->size);
partition_iter = esp_partition_next(partition_iter);
}
const esp_partition_t *running = esp_ota_get_running_partition(); const esp_partition_t *running = esp_ota_get_running_partition();
ESP_LOGI(TAG, "OTA: Running Partition: %s", running->label); ESP_LOGI(TAG, "OTA: Running Partition: %s", running->label);
uint8_t ota_part_count = esp_ota_get_app_partition_count();
ESP_LOGI(TAG, "OTA: Got %d OTA Partitions", ota_part_count);
esp_ota_img_states_t ota_state; esp_ota_img_states_t ota_state;
if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK) { if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK) {
ESP_LOGI(TAG, "OTA: Partition State : %d", ota_state);
if (ota_state == ESP_OTA_IMG_PENDING_VERIFY) { if (ota_state == ESP_OTA_IMG_PENDING_VERIFY) {
bool diagnostic_is_ok = true; // TODO build in valid diagnostics // run diagnostic function ...
bool diagnostic_is_ok = true; // TODO: a real function that checks if
// everything is running properly
if (diagnostic_is_ok) { if (diagnostic_is_ok) {
esp_ota_mark_app_valid_cancel_rollback(); ESP_LOGI(
TAG,
"Diagnostics completed successfully! Continuing execution ...");
// esp_ota_mark_app_valid_cancel_rollback();
} else { } else {
// esp_ota_mark_app_invalid_rollback(); Put this function at the start ESP_LOGE(
// so when the esp crashes it can rollback TAG,
esp_ota_mark_app_invalid_rollback_and_reboot(); "Diagnostics failed! Start rollback to the previous version ...");
// esp_ota_mark_app_invalid_rollback_and_reboot();
} }
} }
} }
const esp_partition_t *next_ota_partition = const char nvs_part_name[] = "nvs_data";
esp_ota_get_next_update_partition(NULL); const char nvs_namespace_name[] = "saved_clients";
int app_size = get_app_size(next_ota_partition); ret = nvs_flash_init_partition(nvs_part_name);
ESP_LOGE(TAG, "App Size in Other Partition %d", app_size); if (ret == ESP_ERR_NVS_NO_FREE_PAGES ||
ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase_partition(nvs_part_name));
ret = nvs_flash_init_partition(nvs_part_name);
}
ESP_ERROR_CHECK(ret);
nvs_handle_t nt;
ESP_ERROR_CHECK(nvs_open_from_partition(nvs_part_name, nvs_namespace_name,
NVS_READWRITE, &nt));
int32_t outval;
ret = nvs_get_i32(nt, "test_entry", &outval);
if (ret == ESP_ERR_NVS_NOT_FOUND) {
ESP_ERROR_CHECK(nvs_set_i32(nt, "test_entry", 6969));
ESP_ERROR_CHECK(nvs_commit(nt));
ESP_LOGE(TAG, "Nichts im Flash gefunden hab was dahin geschrieben");
} else if (ret == ESP_OK) {
ESP_LOGE(TAG, "DAS WAR IM FLASH %d", outval);
}
nvs_close(nt);
QueueHandle_t espnow_message_queue = QueueHandle_t espnow_message_queue =
xQueueCreate(10, sizeof(ESPNOW_MessageInfo)); xQueueCreate(10, sizeof(ESPNOW_MessageInfo));
@ -335,23 +266,25 @@ void app_main(void) {
xTaskCreate(ESP_MessageBrokerTask, "espnow_message_broker_task", 4096, xTaskCreate(ESP_MessageBrokerTask, "espnow_message_broker_task", 4096,
(void *)&esp_broker_task_params, 4, NULL); (void *)&esp_broker_task_params, 4, NULL);
init_ota(); // Tasks starten basierend auf Master/Client
if (isMaster) { if (isMaster) {
ESP_LOGI(TAG, "Started in Mastermode"); ESP_LOGI(TAG, "Started in Mastermode");
ESPNOW_RegisterMasterCallbacks(); ESPNOW_RegisterMasterCallbacks();
ESPNOW_RegisterOTAMaster();
add_peer(broadcast_address); add_peer(broadcast_address);
xTaskCreate(master_broadcast_task, "MasterBroadcast", 4096, NULL, 1, NULL); xTaskCreate(master_broadcast_task, "MasterBroadcast", 4096, NULL, 1, NULL);
// xTaskCreate(master_ping_task, "MasterPing", 4096, NULL, 1, NULL);
xTaskCreate(master_broadcast_ping, "MasterBroadcastPing", 4096, NULL, 1, xTaskCreate(master_broadcast_ping, "MasterBroadcastPing", 4096, NULL, 1,
NULL); NULL);
// xTaskCreate(client_monitor_task, "MonitorClientTask", 4096, NULL, 1,
// NULL);
QueueHandle_t parsed_message_queue = QueueHandle_t parsed_message_queue =
xQueueCreate(10, sizeof(ParsedMessage_t)); xQueueCreate(10, sizeof(ParsedMessage_t));
init_uart(parsed_message_queue); init_uart(parsed_message_queue);
InitMessageBroker(); InitMessageBroker();
// Initialisiere die Parameterstruktur
broker_task_params.message_queue = parsed_message_queue; broker_task_params.message_queue = parsed_message_queue;
broker_task_params.send_buffer = send_message_buffer; broker_task_params.send_buffer = send_message_buffer;
broker_task_params.send_buffer_size = sizeof(send_message_buffer); broker_task_params.send_buffer_size = sizeof(send_message_buffer);
@ -359,23 +292,22 @@ void app_main(void) {
broker_task_params.payload_buffer_size = broker_task_params.payload_buffer_size =
sizeof(send_message_payload_buffer); sizeof(send_message_payload_buffer);
xTaskCreate(MessageBrokerTask, "MessageHandler", 4096, xTaskCreate(MessageBrokerTask, "message_handler_task", 4096,
(void *)&broker_task_params, 5, NULL); (void *)&broker_task_params, 5, NULL);
master_ota_task_params.client_list = &clientList; RegisterCallback(0x01, echoCallback);
xTaskCreate(MasterOTATask, "MasterOTATask", 4096, RegisterCallback(0x02, versionCallback);
(void *)&master_ota_task_params, 4, NULL); RegisterCallback(0x03, clientInfoCallback);
RegisterCallback(UART_ECHO, echoCallback); init_ota();
RegisterCallback(UART_VERSION, versionCallback);
RegisterCallback(UART_CLIENT_INFO, clientInfoCallback);
RegisterCallback(UART_CLIENT_INPUT, fakeDataCallback);
RegisterCallback(UART_OTA_START_ESPNOW, start_ota_update_espnow);
// xTaskCreate(uart_status_task, "MasterUartStatusTask", 4096, NULL, 1,
// NULL); xTaskCreate(SendClientInfoTask, "SendCientInfo", 4096, NULL, 1,
// NULL);
} else { } else {
ESP_LOGI(TAG, "Started in Slavemode"); ESP_LOGI(TAG, "Started in Slavemode");
ESPNOW_RegisterSlaveCallbacks(); ESPNOW_RegisterSlaveCallbacks();
xTaskCreate(slave_ota_task, "SlaveOTATask", 4096, NULL, 4, NULL); // xTaskCreate(client_data_sending_task, "ClientDataSending", 4096, NULL, 1,
ESPNOW_RegisterOTASlave(); // NULL);
} }
} }

View File

@ -19,4 +19,5 @@
#elif CONFIG_IDF_TARGET_ESP32C3 #elif CONFIG_IDF_TARGET_ESP32C3
#define MASTER_MODE_PIN GPIO_NUM_0 // Jumper-Erkennungspin #define MASTER_MODE_PIN GPIO_NUM_0 // Jumper-Erkennungspin
#endif #endif
#endif #endif

View File

@ -1,124 +0,0 @@
#ifndef MESSAGE_STRUCTS_H
#define MESSAGE_STRUCTS_H
#include <stdbool.h>
#include <stdint.h>
#include <sys/types.h>
#define MAC2STR(a) (a)[0], (a)[1], (a)[2], (a)[3], (a)[4], (a)[5]
#define MACSTR "%02X:%02X:%02X:%02X:%02X:%02X"
typedef enum {
OTA_PREPARE_FOR_UPDATE,
OTA_PREPARE_ACKNOWLEDGED,
OTA_READY_TO_RECEIVE,
OTA_CHUNK,
OTA_REQUEST_BLOCK_STATUS,
OTA_BLOCK_STATUS_REPORT,
OTA_COMMIT_BLOCK,
OTA_BLOCK_COMMITTED,
OTA_FINISH_UPDATE,
OTA_UPDATE_STATUS,
OTA_UPDATE_SLAVE_ACKED,
MASTER_READY_TO_SEND_CHUNKS,
StatusPage,
GetStatusPage,
ConfigPage,
PingPage,
BroadCastPage,
RegisterPage,
} CommandPages;
typedef struct __attribute__((packed)) {
uint32_t total_size;
uint32_t block_size;
} OTA_PREPARE_FOR_UPDATE_Payload;
typedef struct __attribute__((packed)) {
// Empty
} OTA_PREPARE_ACKNOWLEDGED_Payload;
typedef struct __attribute__((packed)) {
uint8_t status; // 0 = READY, 1 = ERROR
} OTA_READY_TO_RECEIVE_Payload;
typedef struct __attribute__((packed)) {
uint16_t block_id;
uint8_t chunk_id;
uint8_t data_len;
uint8_t data[200];
} OTA_CHUNK_Payload;
typedef struct __attribute__((packed)) {
uint16_t block_id;
} OTA_REQUEST_BLOCK_STATUS_Payload;
typedef struct __attribute__((packed)) {
uint16_t block_id;
uint32_t chunk_bitmask;
} OTA_BLOCK_STATUS_REPORT_Payload;
typedef struct __attribute__((packed)) {
uint16_t block_id;
} OTA_COMMIT_BLOCK_Payload;
typedef struct __attribute__((packed)) {
uint16_t block_id;
} OTA_BLOCK_COMMITTED_Payload;
typedef struct __attribute__((packed)) {
// Empty
} OTA_FINISH_UPDATE_Payload;
typedef struct __attribute__((packed)) {
uint8_t status; // 0 = SUCCESS, 1 = FAILED
} OTA_UPDATE_STATUS_Payload;
typedef struct __attribute__((packed)) {
uint16_t current_block_id;
uint16_t update_buffer_write_index;
uint32_t update_size;
uint16_t sequenz_counter; // how often the update buffer gets written
uint8_t status; // 0 = SUCCESS, 1 = FAILED
} OTA_UPDATE_ACK_Payload;
typedef struct __attribute__((packed)) {
uint16_t version; // software version
uint8_t runningPartition;
uint8_t status;
uint32_t uptime;
} StatusPayload;
typedef struct __attribute__((packed)) {
} GetStatusPayload;
typedef struct __attribute__((packed)) {
uint8_t timeslot;
} ConfigPayload;
typedef struct __attribute__((packed)) {
uint32_t timestamp;
} PingPayload;
typedef struct __attribute__((packed)) {
} BroadCastPayload;
typedef struct __attribute__((packed)) {
bool familierClient;
} RegisterPayload;
// TODO: Check checksum fields
typedef struct __attribute__((packed)) {
uint16_t length; // length of complete firmware
uint8_t checksum; // checksum of firmware
} FirmwarePrepPayload;
// TODO: Check checksum fields
typedef struct __attribute__((packed)) {
uint8_t length;
uint8_t checksum;
uint32_t address;
uint8_t payload[240]; // TODO: need a way to figure out a safe value for this
} FirmwarePayload;
#endif // MESSAGE_STRUCTS_H

View File

@ -1,340 +1,61 @@
#include "ota_update.h" #include "ota_update.h"
#include "client_handler.h"
#include "communication_handler.h"
#include "driver/uart.h" #include "driver/uart.h"
#include "esp_app_format.h"
#include "esp_err.h" #include "esp_err.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_log_buffer.h"
#include "esp_now.h"
#include "esp_ota_ops.h" #include "esp_ota_ops.h"
#include "esp_partition.h" #include "esp_partition.h"
#include "esp_system.h" #include "esp_system.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/task.h"
#include "message_builder.h" #include "message_builder.h"
#include "message_handler.h" #include "message_handler.h"
#include "message_structs.h"
#include "uart_handler.h" #include "uart_handler.h"
#include "uart_msg_ids.h" #include "uart_msg_ids.h"
#include <stdbool.h>
#include <stddef.h> #include <stddef.h>
#include <stdint.h>
#include <string.h> #include <string.h>
static const char *TAG = "ALOX - OTA"; #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
static QueueHandle_t ota_task_queue = NULL;
static esp_ota_handle_t update_handle = 0;
static uint8_t update_buffer[UPDATE_BUFFER_SIZE]; static uint8_t update_buffer[UPDATE_BUFFER_SIZE];
static uint8_t update_buffer_chunk[250];
static uint8_t update_buffer_chunk_len;
static uint32_t chunk_bitmask;
static uint16_t current_block_id;
static uint16_t update_buffer_write_index; static uint16_t update_buffer_write_index;
static uint32_t update_size; static uint32_t update_size;
static uint16_t sequenz_counter; // how often the update buffer gets written static uint16_t sequenz_counter; // how often the update buffer gets written
static esp_partition_t partition_to_read_update_from; static const char *TAG = "ALOX - OTA";
static uint32_t partition_to_read_from_read_index; static esp_ota_handle_t update_handle;
static ClientList *client_list;
static bool all_chunks_send;
static bool finished;
uint32_t get_app_size(const esp_partition_t *app_size_partition) { int prepare_ota_update() {
esp_app_desc_t app_desc; const esp_partition_t *running = esp_ota_get_running_partition();
esp_ota_get_partition_description(app_size_partition, &app_desc); ESP_LOGI(TAG, "OTA: Running Partition: %s", running->label);
int part = 0;
esp_image_header_t header; char partition_to_update[] = "ota_0";
if (strcmp(running->label, "ota_0") == 0) {
esp_partition_read(app_size_partition, 0, &header, sizeof(header)); strcpy(partition_to_update, "ota_1");
if (header.magic != ESP_IMAGE_HEADER_MAGIC) { part = 1;
ESP_LOGE(TAG, "KEIN VALIDER HEADER");
return 0;
} }
uint32_t data_len = sizeof(header); const esp_partition_t *update_partition = esp_partition_find_first(
ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_ANY, partition_to_update);
for (int i = 0; i < header.segment_count; i++) { // Check if the partition was found
esp_image_segment_header_t segment_header; if (update_partition == NULL) {
esp_partition_read(app_size_partition, data_len, &segment_header, ESP_LOGE(TAG, "Failed to find OTA partition: %s", partition_to_update);
sizeof(segment_header)); return -1; // Or handle the error appropriately
ESP_LOGI(TAG, "SEGMENT %d Address %d, Segment DataLen %d", i,
segment_header.load_addr, segment_header.data_len);
uint32_t padded_len = (segment_header.data_len + 3) & ~3;
data_len += padded_len + sizeof(segment_header);
} }
data_len += 1; ESP_LOGI(TAG, "Gonna write OTA Update in Partition: %s",
data_len += 32; update_partition->label);
uint32_t padding = (16 - (data_len % 16)) % 16;
data_len += padding;
return data_len;
}
int ota_send_finish(ClientList *client_list) {
// read flash and send data
BaseMessage replyMessage = {};
OTA_FINISH_UPDATE_Payload payload = {};
ESP_LOGI(TAG, "OTA SEND FINISH");
replyMessage = MessageBuilder(OTA_FINISH_UPDATE, *(PayloadUnion *)&payload,
sizeof(payload));
for (int i = 0; i < MAX_CLIENTS; i++) {
if (client_list->Clients[i].slotIsUsed) {
if (client_list->Clients[i].ota_status == OTA_UPDATING) {
esp_now_send(client_list->Clients[i].macAddr, (uint8_t *)&replyMessage,
sizeof(BaseMessage));
client_list->Clients[i].ota_status = OTA_AWAITING_ACK;
}
}
}
finished = true;
return 0;
}
int ota_send_next_update_chunk(ClientList *client_list) {
// read flash and send data
BaseMessage replyMessage = {};
OTA_CHUNK_Payload payload = {};
size_t actual_read = 200;
if (partition_to_read_from_read_index + actual_read > update_size) {
actual_read = update_size - partition_to_read_from_read_index;
}
esp_err_t err = esp_partition_read(&partition_to_read_update_from,
partition_to_read_from_read_index,
payload.data, actual_read);
if (actual_read < 200) {
ESP_LOG_BUFFER_HEX(TAG, payload.data, actual_read);
}
esp_err_t err =
esp_ota_begin(update_partition, OTA_SIZE_UNKNOWN, &update_handle);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGE(TAG, "Could not read partition"); ESP_LOGE(TAG, "esp_ota_begin failed (%s)", esp_err_to_name(err));
esp_ota_abort(update_handle);
return -2;
} }
partition_to_read_from_read_index += actual_read; ESP_LOGI(TAG, "OTA update started successfully.");
payload.data_len = actual_read; return part;
ESP_LOGI(TAG, "READ %d Bytes Sendig it to all Clients waiting", actual_read);
ESP_LOGI(TAG, "READ PARTITION AT %d Bytes MAX Bytes %d",
partition_to_read_from_read_index, update_size);
replyMessage =
MessageBuilder(OTA_CHUNK, *(PayloadUnion *)&payload, sizeof(payload));
for (int i = 0; i < MAX_CLIENTS; i++) {
if (client_list->Clients[i].slotIsUsed) {
if (client_list->Clients[i].ota_status == OTA_UPDATING) {
esp_now_send(client_list->Clients[i].macAddr, (uint8_t *)&replyMessage,
sizeof(BaseMessage));
client_list->Clients[i].ota_status = OTA_AWAITING_ACK;
}
}
}
if (partition_to_read_from_read_index == update_size)
return 1; // last update chunk send now finish it!
return 0;
}
void MasterOTATask(void *pvParameter) {
ESP_LOGI(TAG, "master_ota_task started");
ota_task_queue_message_t msg;
MasterOTA_TaskParams_t task_params = *(MasterOTA_TaskParams_t *)pvParameter;
client_list = task_params.client_list;
while (1) {
if (xQueueReceive(ota_task_queue, &msg, portMAX_DELAY)) {
ESP_LOGI(TAG, "master ota_task received command: %d", msg.command);
BaseMessage replyMessage = {};
switch (msg.command) {
case OTA_SEND_SLAVES_PREPARE_MESSAGE: {
}
case OTA_SLAVE_WILL_PREPARE: {
int id = get_client_id(client_list, msg.mac_addr);
if (id < 0) {
// error
ESP_LOGE(TAG, "Error set OTA_PREPARE could not get client id");
}
// just wait
// mark client that it will wait
ESP_LOGI(TAG, "MASTER OTA TASK: Marking Client %d as OTA_PREPARING",
id);
client_list->Clients[id].ota_status = OTA_PREPARING;
break;
}
case OTA_SLAVE_IS_PREPARED: {
// client is prepared check if all clients are preapred to send chunks
int id = get_client_id(client_list, msg.mac_addr);
if (id < 0) {
// error
}
if (client_list->Clients[id].ota_status == OTA_PREPARING) {
ESP_LOGI(TAG, "MASTER OTA TASK: Marking Client %d as OTA_UPDATING",
id);
client_list->Clients[id].ota_status = OTA_UPDATING;
} else {
ESP_LOGE(TAG, "MASTER OTA TASK: Client this should not happend");
}
bool start = true;
// check if all clients are prepared
for (int i = 0; i < MAX_CLIENTS; i++) {
if (client_list->Clients[i].slotIsUsed) {
if (client_list->Clients[i].ota_status != OTA_UPDATING)
start = false;
}
}
if (start)
ota_send_next_update_chunk(client_list);
break;
}
case OTA_SLAVE_ACKED: {
// mark client as acked check if all clients acked to send next message
int id = get_client_id(client_list, msg.mac_addr);
if (id < 0) {
// error
}
if (client_list->Clients[id].ota_status == OTA_AWAITING_ACK) {
ESP_LOGI(TAG, "OTA_SLAVE_ACKED Client %d Status Update OTA_UPDATING",
id);
client_list->Clients[id].ota_status = OTA_UPDATING;
} else {
ESP_LOGE(TAG, "OTA_SLAVE_ACKED Client %d Status Should not HAPPEND",
id);
}
bool start = true;
// check if all clients are prepared
for (int i = 0; i < MAX_CLIENTS; i++) {
if (client_list->Clients[i].slotIsUsed) {
ESP_LOGI(TAG, "SLOT %d is USED", i);
if (client_list->Clients[i].ota_status != OTA_UPDATING)
start = false;
}
}
if (start) {
if (finished)
break; // dont need to send anything else
if (all_chunks_send) {
ota_send_finish(client_list);
break;
}
ESP_LOGE(TAG, "OTA_SLAVE_ACKED all clients have the status "
"OTA_UPDATING SENDING NEXT CHUNK");
int end = ota_send_next_update_chunk(client_list);
if (end) {
all_chunks_send = true;
}
}
break;
}
case OTA_SLAVE_ERROR:
break;
// mark client as error
case OTA_MASTER_SEND_PREAPRE_REQUEST:
break;
case OTA_MASTER_SEND_CHUNK:
break;
case OTA_MASTER_SEND_FINISH:
break;
}
}
}
}
void slave_ota_task(void *pvParameter) {
ESP_LOGI(TAG, "slave_ota_task started");
ota_task_queue_message_t msg;
BaseMessage replyMessage = {};
while (1) {
if (xQueueReceive(ota_task_queue, &msg, portMAX_DELAY)) {
ESP_LOGI(TAG, "slave ota_task received command: %d", msg.command);
switch (msg.command) {
case OTA_SEND_SLAVES_PREPARE_MESSAGE:
break;
case OTA_SLAVE_WILL_PREPARE:
break;
case OTA_SLAVE_IS_PREPARED:
break;
case OTA_SLAVE_ACKED:
break;
case OTA_SLAVE_ERROR:
break;
case OTA_MASTER_SEND_PREAPRE_REQUEST: {
ESP_LOGE(TAG, "START PREAPRE CALL");
int part = prepare_ota_update(); // this part function is blocking
OTA_READY_TO_RECEIVE_Payload payload = {};
if (part < 0) {
payload.status = 1; // ERROR
} else {
payload.status = 0; // READY
}
ESP_LOGE(TAG, "PREPARED %d", part);
replyMessage = MessageBuilder(
OTA_READY_TO_RECEIVE, *(PayloadUnion *)&payload, sizeof(payload));
esp_now_send(msg.mac_addr, (uint8_t *)&replyMessage,
sizeof(BaseMessage));
break;
}
case OTA_MASTER_SEND_CHUNK: {
// TODO: Move Update_buffer_chunk in normal update buffer no need for
// the extra step...
// TODO: at the moment its just so i can use the write_ota_update
// function unmodified
ESP_LOGI(TAG, "Master send Chunk writing it!");
write_ota_update(update_buffer_chunk_len, update_buffer_chunk);
ESP_LOGI(TAG, "AFTER WRITE_OTA_UPDATE!");
OTA_UPDATE_ACK_Payload payload = {
.update_buffer_write_index = update_buffer_write_index,
.current_block_id = current_block_id,
.sequenz_counter = sequenz_counter,
.status = 0,
};
replyMessage = MessageBuilder(
OTA_UPDATE_SLAVE_ACKED, *(PayloadUnion *)&payload, sizeof(payload));
esp_now_send(msg.mac_addr, (uint8_t *)&replyMessage,
sizeof(BaseMessage));
break;
}
case OTA_MASTER_SEND_FINISH: {
esp_err_t err = end_ota_update();
int status = 0;
if (err != ESP_OK) {
status = 1; // TODO: Set real error
}
ESP_LOGI(TAG, "UPDATE FERTIG STATUS %d should be 0", status);
OTA_UPDATE_ACK_Payload payload = {
.update_buffer_write_index = update_buffer_write_index,
.current_block_id = current_block_id,
.sequenz_counter = sequenz_counter,
.status = status,
};
replyMessage = MessageBuilder(
OTA_UPDATE_SLAVE_ACKED, *(PayloadUnion *)&payload, sizeof(payload));
esp_now_send(msg.mac_addr, (uint8_t *)&replyMessage,
sizeof(BaseMessage));
break;
}
}
}
}
} }
void start_uart_update(uint8_t msgid, const uint8_t *payload, void start_uart_update(uint8_t msgid, const uint8_t *payload,
@ -346,14 +67,13 @@ void start_uart_update(uint8_t msgid, const uint8_t *payload,
vTaskPrioritySet(NULL, 2); vTaskPrioritySet(NULL, 2);
update_size = 0; update_size = 0;
update_buffer_write_index = 0;
sequenz_counter = 0;
all_chunks_send = false;
finished = false;
int part = prepare_ota_update(); int part = prepare_ota_update();
// TODO: what does this do? maybe comment it out for now? // Message:
// byte partition
// byte error
if (part < 0) { if (part < 0) {
send_payload_buffer[1] = (part * -1) & 0xff; send_payload_buffer[1] = (part * -1) & 0xff;
} else { } else {
@ -375,18 +95,20 @@ void start_uart_update(uint8_t msgid, const uint8_t *payload,
} }
esp_err_t write_ota_update(uint32_t write_len, const uint8_t *payload) { esp_err_t write_ota_update(uint32_t write_len, const uint8_t *payload) {
ESP_LOGI(TAG, "write_ota_update: write_len: %d", write_len); if (update_buffer_write_index > UPDATE_BUFFER_SIZE - write_len) {
ESP_LOGI(TAG, "write_ota_update: update_buffer_write_index: %d", // ESP_LOGI(TAG, "Writing Data to Update BUffer Sequence %d, writing Data
update_buffer_write_index); // %d",
if (update_buffer_write_index + write_len > UPDATE_BUFFER_SIZE) { // sequenz_counter, write_len);
ESP_LOGI(TAG, "write_ota_update: schreib das update weg!"); // write to ota
esp_err_t err = esp_err_t err =
esp_ota_write(update_handle, update_buffer, update_buffer_write_index); esp_ota_write(update_handle, update_buffer, update_buffer_write_index);
if (err != ESP_OK) { if (err != ESP_OK) {
return err; return err;
} }
update_buffer_write_index = 0; update_buffer_write_index = 0;
sequenz_counter++; sequenz_counter++;
return err;
} }
memcpy(&update_buffer[update_buffer_write_index], payload, write_len); memcpy(&update_buffer[update_buffer_write_index], payload, write_len);
@ -394,23 +116,16 @@ esp_err_t write_ota_update(uint32_t write_len, const uint8_t *payload) {
return ESP_OK; return ESP_OK;
} }
void payload_uart_update(uint8_t msgid, const uint8_t *payload_data_from_uart, void payload_uart_update(uint8_t msgid, const uint8_t *payload,
size_t total_payload_len_from_uart, size_t payload_len, uint8_t *send_payload_buffer,
uint8_t *send_payload_buffer,
size_t send_payload_buffer_size, uint8_t *send_buffer, size_t send_payload_buffer_size, uint8_t *send_buffer,
size_t send_buffer_size) { size_t send_buffer_size) {
// ESP_LOGI(TAG, "OTA Update Payload Uart Command");
const uint8_t *actual_firmware_data = payload_data_from_uart; uint32_t write_len = MIN(UPDATE_PAYLOAD_SIZE, payload_len);
uint32_t write_len = total_payload_len_from_uart;
if (update_size == 0) {
ESP_LOGI(TAG, "First chunk received. write_len: %d", write_len);
}
update_size += write_len; update_size += write_len;
esp_err_t err = write_ota_update(write_len, actual_firmware_data); esp_err_t err = write_ota_update(write_len, payload);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGE(TAG, "GOT ESP ERROR WRITE OTA %d", err); ESP_LOGE(TAG, "GOT ESP ERROR WRITE OTA %d", err);
@ -427,13 +142,44 @@ void payload_uart_update(uint8_t msgid, const uint8_t *payload_data_from_uart,
ESP_LOGE(TAG, ESP_LOGE(TAG,
"Error Building UART Message: payload_len, %d, sendbuffer_size: " "Error Building UART Message: payload_len, %d, sendbuffer_size: "
"%d, mes_len(error): %d", "%d, mes_len(error): %d",
total_payload_len_from_uart, send_buffer_size, len); payload_len, send_buffer_size, len);
return; return;
} }
uart_write_bytes(MASTER_UART, send_buffer, len); uart_write_bytes(MASTER_UART, send_buffer, len);
} }
esp_err_t end_ota_update() {
esp_err_t err =
esp_ota_write(update_handle, update_buffer, update_buffer_write_index);
if (err != ESP_OK) {
ESP_LOGE(TAG, "GOT ESP ERROR WRITE OTA %d", err);
}
err = esp_ota_end(update_handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "GOT ESP ERROR WRITE OTA %d", err);
}
ESP_LOGE(TAG, "UPDATE ENDE UPDATGE SIZE SIND %d BYTES", update_size);
// Hol dir die zuletzt geschriebene Partition
const esp_partition_t *partition = esp_ota_get_next_update_partition(NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "Failed to get updated partition");
err = ESP_FAIL;
}
// Setze sie als Boot-Partition
ESP_LOGE(TAG, "Setzte nächste Partition auf %s", partition->label);
err = esp_ota_set_boot_partition(partition);
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_ota_set_boot_partition failed: %s",
esp_err_to_name(err));
}
return err;
}
void end_uart_update(uint8_t msgid, const uint8_t *payload, size_t payload_len, void end_uart_update(uint8_t msgid, const uint8_t *payload, size_t payload_len,
uint8_t *send_payload_buffer, uint8_t *send_payload_buffer,
size_t send_payload_buffer_size, uint8_t *send_buffer, size_t send_payload_buffer_size, uint8_t *send_buffer,
@ -442,6 +188,7 @@ void end_uart_update(uint8_t msgid, const uint8_t *payload, size_t payload_len,
esp_err_t err = end_ota_update(); esp_err_t err = end_ota_update();
// message ret esp_err_t
int send_payload_len = 1; int send_payload_len = 1;
send_payload_buffer[0] = err & 0xff; send_payload_buffer[0] = err & 0xff;
int len = build_message(UART_OTA_END, send_payload_buffer, send_payload_len, int len = build_message(UART_OTA_END, send_payload_buffer, send_payload_len,
@ -459,202 +206,10 @@ void end_uart_update(uint8_t msgid, const uint8_t *payload, size_t payload_len,
vTaskPrioritySet(NULL, 1); vTaskPrioritySet(NULL, 1);
} }
void init_ota() { void write_ota_update_from_uart_task(void *param) {}
ota_task_queue = xQueueCreate(50, sizeof(ota_task_queue_message_t));
void init_ota() {
RegisterCallback(UART_OTA_START, start_uart_update); RegisterCallback(UART_OTA_START, start_uart_update);
RegisterCallback(UART_OTA_PAYLOAD, payload_uart_update); RegisterCallback(UART_OTA_PAYLOAD, payload_uart_update);
RegisterCallback(UART_OTA_END, end_uart_update); RegisterCallback(UART_OTA_END, end_uart_update);
} }
int prepare_ota_update() {
const esp_partition_t *running = esp_ota_get_running_partition();
ESP_LOGI(TAG, "Running Partition: %s", running->label);
const esp_partition_t *update_partition =
esp_ota_get_next_update_partition(NULL);
if (update_partition == NULL) {
ESP_LOGE(TAG, "Failed to find OTA partition.");
return -1;
}
ESP_LOGI(TAG, "Writing OTA Update to Partition: %s", update_partition->label);
esp_err_t err =
esp_ota_begin(update_partition, OTA_SIZE_UNKNOWN, &update_handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_ota_begin failed (%s)", esp_err_to_name(err));
return -2;
}
return 0;
}
esp_err_t end_ota_update() {
if (update_buffer_write_index > 0) {
ESP_LOG_BUFFER_HEX(TAG, update_buffer, update_buffer_write_index);
esp_err_t err =
esp_ota_write(update_handle, update_buffer, update_buffer_write_index);
vTaskDelay(1);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Error writing remaining data to partition: %s",
esp_err_to_name(err));
return err;
}
}
esp_err_t err = esp_ota_end(update_handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_ota_end failed: %s", esp_err_to_name(err));
ESP_LOGI(TAG, "Total blocks written: %u, Last partial block size: %u",
sequenz_counter, update_buffer_write_index);
return err;
}
const esp_partition_t *update_partition =
esp_ota_get_next_update_partition(NULL);
err = esp_ota_set_boot_partition(update_partition);
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_ota_set_boot_partition failed: %s",
esp_err_to_name(err));
}
return err;
}
// Acknoledge that the slave should prepare for an update
// Queues the Prepare Task beacuse it takes like 30 seconds
void slave_Prep_Upgrade_Callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) {
ESP_LOGE(TAG, "SLAVE PREPARE FOR UPDATE Callback");
update_size = 0;
update_buffer_write_index = 0;
sequenz_counter = 0;
const BaseMessage *message = (const BaseMessage *)data;
const OTA_PREPARE_FOR_UPDATE_Payload *payload =
&message->payload.ota_prepare_for_update_payload;
// total_update_size = payload->total_size;
// Queue Command for Task to call the prepare method
ota_task_queue_message_t msg = {.command = OTA_MASTER_SEND_PREAPRE_REQUEST};
memcpy(msg.mac_addr, esp_now_info->src_addr, ESP_NOW_ETH_ALEN);
if (xQueueSend(ota_task_queue, &msg, pdMS_TO_TICKS(10)) != pdTRUE) {
ESP_LOGE(TAG, "Failed to send prepare command to OTA task");
}
ESP_LOGE(TAG, "SLAVE PREPARE CALLBACK AFTER QUEUE SEND");
// Tell the master that the slave will preapre
OTA_PREPARE_ACKNOWLEDGED_Payload *reply_payload;
BaseMessage reply_message =
MessageBuilder(OTA_PREPARE_ACKNOWLEDGED, *(PayloadUnion *)&reply_payload,
sizeof(OTA_PREPARE_ACKNOWLEDGED_Payload));
ESP_ERROR_CHECK(esp_now_send(esp_now_info->src_addr,
(uint8_t *)&reply_message, sizeof(BaseMessage)));
}
void slave_Update_Chunk_Callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) {
const BaseMessage *message = (const BaseMessage *)data;
const OTA_CHUNK_Payload *payload = &message->payload.ota_chunk_payload;
// copy data to update_buffer_chunk so that the write method can write it
// back later
memcpy(update_buffer_chunk, payload->data, payload->data_len);
update_buffer_chunk_len = payload->data_len;
ESP_LOGI(TAG, "slave_update_Chunk_Callback got %d bytes from Master",
payload->data_len);
// Queue Command for Task to call the ota_write_message method
ota_task_queue_message_t msg = {.command = OTA_MASTER_SEND_CHUNK};
memcpy(msg.mac_addr, esp_now_info->src_addr, ESP_NOW_ETH_ALEN);
if (xQueueSend(ota_task_queue, &msg, pdMS_TO_TICKS(10)) != pdTRUE) {
ESP_LOGE(TAG, "Failed to send prepare command to OTA task");
}
}
void slave_Update_Finished_Callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len) {
const BaseMessage *message = (const BaseMessage *)data;
const OTA_FINISH_UPDATE_Payload *payload =
&message->payload.ota_finish_update_payload;
ESP_LOGI(TAG, "slave_Update_Finished_Callback");
// Queue Command for Task to call the ota_write_message method
ota_task_queue_message_t msg = {.command = OTA_MASTER_SEND_FINISH};
memcpy(msg.mac_addr, esp_now_info->src_addr, ESP_NOW_ETH_ALEN);
if (xQueueSend(ota_task_queue, &msg, pdMS_TO_TICKS(10)) != pdTRUE) {
ESP_LOGE(TAG, "Failed to send prepare command to OTA task");
}
}
void start_ota_update_espnow(uint8_t msgid, const uint8_t *payload,
size_t payload_len, uint8_t *send_payload_buffer,
size_t send_payload_buffer_size,
uint8_t *send_buffer, size_t send_buffer_size) {
ESP_LOGI(TAG, "Starting OTA update for all clients");
const esp_partition_t *ota_update_partition;
ota_update_partition = esp_ota_get_next_update_partition(NULL);
if (ota_update_partition == NULL) {
ESP_LOGE(TAG, "Failed to get update partition");
return;
}
update_size = get_app_size(ota_update_partition);
partition_to_read_update_from = *ota_update_partition;
partition_to_read_from_read_index = 0;
BaseMessage replyMessage = {};
OTA_PREPARE_FOR_UPDATE_Payload replyPayload = {};
replyMessage =
MessageBuilder(OTA_PREPARE_FOR_UPDATE, *(PayloadUnion *)&replyPayload,
sizeof(replyPayload));
for (int i = 0; i < MAX_CLIENTS; i++) {
if (client_list->Clients[i].slotIsUsed) {
esp_now_send(client_list->Clients[i].macAddr, (uint8_t *)&replyMessage,
sizeof(BaseMessage));
client_list->Clients[i].ota_status = OTA_READY;
}
}
}
void master_ota_prepare_acknowledge_callback(
const esp_now_recv_info_t *esp_now_info, const uint8_t *data,
int data_len) {
ESP_LOGI(TAG, "entering master_ota_prepare_acknowledge_callback");
// Queue Command for Task to call the ota_write_message method
ota_task_queue_message_t msg = {.command = OTA_SLAVE_WILL_PREPARE};
memcpy(msg.mac_addr, esp_now_info->src_addr, ESP_NOW_ETH_ALEN);
if (xQueueSend(ota_task_queue, &msg, pdMS_TO_TICKS(10)) != pdTRUE) {
ESP_LOGE(TAG, "Failed to send prepare command to OTA task");
}
}
void master_ota_ready_to_recieve_callback(
const esp_now_recv_info_t *esp_now_info, const uint8_t *data,
int data_len) {
ESP_LOGI(TAG, "entering master_ota_ready_to_recieve_callback");
// Queue Command for Task to call the ota_write_message method
ota_task_queue_message_t msg = {.command = OTA_SLAVE_IS_PREPARED};
memcpy(msg.mac_addr, esp_now_info->src_addr, ESP_NOW_ETH_ALEN);
if (xQueueSend(ota_task_queue, &msg, pdMS_TO_TICKS(10)) != pdTRUE) {
ESP_LOGE(TAG, "Failed to send prepare command to OTA task");
}
}
void master_ota_update_slave_acknowledge_callback(
const esp_now_recv_info_t *esp_now_info, const uint8_t *data,
int data_len) {
ESP_LOGI(TAG, "entering master_ota_update_slave_acknowledge_callback");
// Queue Command for Task to call the ota_write_message method
ota_task_queue_message_t msg = {.command = OTA_SLAVE_ACKED};
memcpy(msg.mac_addr, esp_now_info->src_addr, ESP_NOW_ETH_ALEN);
if (xQueueSend(ota_task_queue, &msg, pdMS_TO_TICKS(10)) != pdTRUE) {
ESP_LOGE(TAG, "Failed to send prepare command to OTA task");
}
}

View File

@ -1,81 +1,25 @@
#ifndef OTA_UPDATE_H #ifndef OTA_UPDATE_H
#define OTA_UPDATE_H #define OTA_UPDATE_H
#include "client_handler.h"
#include "esp_err.h" #include "esp_err.h"
#include "esp_now.h"
#include "esp_partition.h"
#include "message_structs.h"
#include <stdint.h> #include <stdint.h>
#include <sys/types.h> #include <sys/types.h>
#define UPDATE_BUFFER_SIZE 4000
#define UPDATE_BUFFER_SIZE 4096
#define UPDATE_PAYLOAD_SIZE 200 #define UPDATE_PAYLOAD_SIZE 200
#define UPDATE_MAX_SEQUENZES (UPDATE_BUFFER_SIZE / UPDATE_PAYLOAD_SIZE) #define UPDATE_MAX_SEQUENZES (UPDATE_BUFFER_SIZE / UPDATE_PAYLOAD_SIZE)
typedef enum {
OTA_SEND_SLAVES_PREPARE_MESSAGE,
OTA_SLAVE_WILL_PREPARE,
OTA_SLAVE_IS_PREPARED,
OTA_SLAVE_ACKED,
OTA_SLAVE_ERROR,
OTA_MASTER_SEND_PREAPRE_REQUEST,
OTA_MASTER_SEND_CHUNK,
OTA_MASTER_SEND_FINISH,
} ota_command_t;
typedef struct {
ota_command_t command;
uint8_t mac_addr[ESP_NOW_ETH_ALEN];
} ota_task_queue_message_t;
typedef struct {
ClientList *client_list;
} MasterOTA_TaskParams_t;
void init_ota(); void init_ota();
void MasterOTATask(void *pvParameter);
void slave_ota_task(void *pvParameter);
u_int32_t get_app_size(const esp_partition_t *app_size_partition); enum OTA_UPDATE_STATES {
IDEL,
START_REQUESTED,
WAITING_FOR_PAYLOAD,
WRITING_OTA_TO_PARTITION,
};
int prepare_ota_update(); int prepare_ota_update();
esp_err_t write_ota_update(uint32_t write_len, const uint8_t *payload); esp_err_t write_ota_update(uint32_t write_len, const uint8_t *payload);
esp_err_t end_ota_update(); esp_err_t end_ota_update();
void slave_Prep_Upgrade_Callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len);
void slave_Update_Chunk_Callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len);
void slave_Update_Finished_Callback(const esp_now_recv_info_t *esp_now_info,
const uint8_t *data, int data_len);
void master_ota_prepare_acknowledge_callback(
const esp_now_recv_info_t *esp_now_info, const uint8_t *data, int data_len);
void master_ota_ready_to_recieve_callback(
const esp_now_recv_info_t *esp_now_info, const uint8_t *data, int data_len);
void master_ota_update_slave_acknowledge_callback(
const esp_now_recv_info_t *esp_now_info, const uint8_t *data, int data_len);
void start_uart_update(uint8_t msgid, const uint8_t *payload,
size_t payload_len, uint8_t *send_payload_buffer,
size_t send_payload_buffer_size, uint8_t *send_buffer,
size_t send_buffer_size);
void payload_uart_update(uint8_t msgid, const uint8_t *payload_data_from_uart,
size_t total_payload_len_from_uart,
uint8_t *send_payload_buffer,
size_t send_payload_buffer_size, uint8_t *send_buffer,
size_t send_buffer_size);
void end_uart_update(uint8_t msgid, const uint8_t *payload, size_t payload_len,
uint8_t *send_payload_buffer,
size_t send_payload_buffer_size, uint8_t *send_buffer,
size_t send_buffer_size);
void start_ota_update_espnow(uint8_t msgid, const uint8_t *payload,
size_t payload_len, uint8_t *send_payload_buffer,
size_t send_payload_buffer_size,
uint8_t *send_buffer, size_t send_buffer_size);
#endif #endif

View File

@ -6,14 +6,12 @@ enum UART_MSG_IDS {
UART_ECHO = 0x01, UART_ECHO = 0x01,
UART_VERSION = 0x02, UART_VERSION = 0x02,
UART_CLIENT_INFO = 0x03, UART_CLIENT_INFO = 0x03,
UART_CLIENT_INPUT = 0x04,
// OTA // OTA
UART_OTA_START = 0x10, UART_OTA_START = 0x10,
UART_OTA_PAYLOAD = 0x11, UART_OTA_PAYLOAD = 0x11,
UART_OTA_END = 0x12, UART_OTA_END = 0x12,
UART_OTA_STATUS = 0x13, UART_OTA_STATUS = 0x13,
UART_OTA_START_ESPNOW = 0x14,
}; };
#endif #endif